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bounds is in order. While the lower bound would be particularly important, the 
improved upper bound would also be useful. 
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An Approximation to the Fermi Integral Fl/2(x) 

By H. Werner and G. Raymann 

The Fermi Integral as defined, for instance, in the Handbuch der Physik, Bd. 
XX, S. 58 [1], is given by 

(1) PF(x) 

GO t dt 
Joet- + 1 

The function F112(x) has for negative values of x an expansion of the form 

(2) F112(X) 3/2 2 V- 

and for large positive x the asymptotic expansion 

F112(x) X3/2 ?2 + r2 + (3) 7 7r4 
4 

-3~~~~~~~ 12n- 1) 3- CO Bx .74 (3)2n1n 

compare [2], formulas (10) and (12); 
B2n are the Bernoulli numbers, given for example in [3], page 298. We obtained 

Chebyshev approximations to F112(x), based upon the table by McDougall and 
Stoner [4]. This table was subtabulated by interpolation with a fifth-degree poly- 
nomial. The approximations are 

5 

F*2(x) = ex E avevx for -Oo < x ? +1, 
v=O 

F*2(x) = x3/ [ + E for +1 < x < +cx, 
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the coefficients 

v a, b, 

0 +0.8860 7596 +0.8435 00 
1 -0.3087 1705 +0.7108 09 
2 +0.1463 8520 -3.7124 56 
3 -0.0584 3877 +6.7056 28 
4 +0.0143 1771 -5.5948 77 
5 -0.0015 0176 +1.7777 87 

With these approximations, the relative error JF1/2 (x) - F1*2 (x) J/F112(x) is less 
than 2- 10-4 and 5- 10--4, respectively. 

Another intensive table of F,(x) has been given by G. A. Chisnall [5] who also 
discusses in [6] a method for the interpolation of the existing tables of F1/2(x). It 
is not difficult to obtain analogous Chebyshev approximations to F,(x) for any 
fixed values of p to a prescribed degree of accuracy if one is able to generate the 
function with this (or slighty more) accuracy. 
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On the Congruences (p -1 )! -1 and 
2p-1 1 (mod p2) 

By Erna H. Pearson 

The results of computations to determine primes p such that one of the relations 

(1) (p-i)! -1 (mod p2), 

(2) 2p- 1 (mod p2) 

holds have been published previously [1-5]. The known Wilson primes (those 
satisfying (1)) are 5, 13, and 563, the last having been determined by Goldberg [3] 
in testing p < 104. Froberg [4] tested 104 < p < 30,000 without finding additional 
Wilson primes. 

Froberg [4] determined p = 1093 and p = 3511 to be the only primes less than 
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