bounds is in order. While the lower bound would be particularly important, the improved upper bound would also be useful.

Applied Mathematics Laboratory David Taylor Model Basin Washington 7, D. C.

DANIEL SHANKS, "On the conjecture of Hardy & Littlewood concerning the number of primes of the form n² + a," Math. Comp., v. 14, 1960, p. 321-332.
 DANIEL SHANKS & JOHN W. WRENCH, JR., "The calculation of certain Dirichlet series,"

Math. Comp., v. 17, 1963, p. 136-154.
3. JOHN W. WRENCH, JR., "Evaluation of Artin's constant and the twin-prime constant," Math. Comp., v. 15, 1961, p. 396-398.
4. PAUL T. BATEMAN & ROSEMARIE M. STEMMLER, "Waring's problem in algebraic number fields and primes of the form (p^r - 1)/(p^d - 1)," Illinois J. Math., v. 6, 1962, p. 142-156.

An Approximation to the Fermi Integral $F_{1/2}(x)$

By H. Werner and G. Raymann

The Fermi Integral as defined, for instance, in the Handbuch der Physik, Bd. XX, S. 58 [1], is given by

(1)
$$F_{p}(x) = \int_{0}^{\infty} \frac{t^{p}}{e^{t-x}+1} dt.$$

The function $F_{1/2}(x)$ has for negative values of x an expansion of the form

(2)
$$F_{1/2}(x) = \frac{\sqrt{\pi}}{2} \sum_{\nu=1}^{\infty} (-1)^{\nu-1} \cdot \frac{e^{\nu x}}{\nu^{3/2}}$$

and for large positive x the asymptotic expansion

(3)
$$F_{1/2}(x) \sim x^{3/2} \left[\frac{2}{3} + \frac{\pi^2}{12 \cdot x^2} + \binom{1}{2}{3} \cdot \frac{7}{60} \cdot \frac{\pi^4}{x^4} + \cdots + \binom{1}{2n-1} \frac{2^{2n-1}-1}{n} |B_{2n}| \cdot \frac{\pi^{2n}}{x^{2n}} + \cdots \right];$$

compare [2], formulas (10) and (12);

 B_{2n} are the Bernoulli numbers, given for example in [3], page 298. We obtained Chebyshev approximations to $F_{1/2}(x)$, based upon the table by McDougall and Stoner [4]. This table was subtabulated by interpolation with a fifth-degree polynomial. The approximations are

(4)

$$F_{1/2}^{*}(x) = e^{x} \sum_{\nu=0}^{5} a_{\nu} e^{\nu x} \quad \text{for} \quad -\infty < x \leq +1,$$

$$F_{1/2}^{*}(x) = x^{3/2} \left[\frac{2}{3} + \sum_{\nu=0}^{5} \frac{b_{\nu}}{x^{2\nu+2}} \right] \quad \text{for} \quad +1 < x < +\infty,$$

Received March 27, 1961. This note was prepared at the AEG Forschungs-Institut, Frankfurt (Main).

the coefficients

ν	$a_{ u}$	b_{ν}
0	+0.8860 7596	+0.8435 00
1	-0.3087 1705	+0.7108 09
2	+0.1463 8520	-3.7124 56
3	-0.0584 3877	+6.7056 28
4	+0.0143 1771	-5.5948 77
5	-0.0015 0176	+1.777787

With these approximations, the relative error $|F_{1/2}(x) - F_{1/2}^*(x)|/F_{1/2}(x)$ is less than $2 \cdot 10^{-4}$ and $5 \cdot 10^{-4}$, respectively.

Another intensive table of $F_p(x)$ has been given by G. A. Chisnall [5] who also discusses in [6] a method for the interpolation of the existing tables of $F_{1/2}(x)$. It is not difficult to obtain analogous Chebyshev approximations to $F_{p}(x)$ for any fixed values of p to a prescribed degree of accuracy if one is able to generate the function with this (or slighty more) accuracy.

Institut für Angewandte Mathematik

der Universität Hamburg, Hamburg, and

Deutsches Rechenzentrum

Darmstadt, Germany

1. O. MADELUNG, Halbleiter in Handbuch der Physik, herausgegeben von S. Flügge, Bd.

XX, Springer, Berlin, 1957, p. 58-59.
2. A. C. BEER, M. N. CHASE & P. F. CHOQUARD, "Extension of McDougall-Stoner tables of the Fermi-Dirac functions," Phys. Acta Helv. 28, 1955, p. 529-542.
3. E. JAHNKE & F. EMDE, unter Mitwirkung von F. Lösch, Tafeln höherer Funktionen, B.

G. Teubner Verlagsgesellschaft, Stuttgart, 1960.
4. J. McDougall & E. C. STONER, "The computation of Fermi-Dirac functions," Trans. Roy. Soc., Ser. A 237, 1939, p. 67-104.
5. G. A. CHISNALL, Jodrell Bank Annals, v. 1, 1956, p. 126-140.
6. G. A. CHISNALL, "A modified Chebyshev Everett interpolation formula," MTAC v. 10, 1056.

1956, p. 66-73.

On the Congruences $(p-1)! \equiv -1$ and $2^{p-1} \equiv 1 \pmod{p^2}$

By Erna H. Pearson

The results of computations to determine primes p such that one of the relations

(1)
$$(p-1)! \equiv -1 \pmod{p^2}$$

(2)
$$2^{p-1} \equiv 1 \pmod{p^2}$$

holds have been published previously [1-5]. The known Wilson primes (those satisfying (1)) are 5, 13, and 563, the last having been determined by Goldberg [3] in testing $p < 10^4$. Froberg [4] tested $10^4 without finding additional$ Wilson primes.

Froberg [4] determined p = 1093 and p = 3511 to be the only primes less than

Received April 6, 1962.